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Preface

One of the best known approaches to the development of cognitive agents is the BDI (Beliefs-
Desires-Intentions) architecture. In the area of agent-oriented programming languages in particular,
AgentSpeak(L) has been one of the most influential abstract languages based on the BDI architecture.
The type of agents specified with AgentSpeak(L) are sometimes referred to as reactive planning sys-
tems. To the best of our knowledge, Jason is the first fully-fledged interpreter for a much improved
version of AgentSpeak, including also speech-act based inter-agent communication. Using SACI, a
Jason multi-agent system can be distributed over a network effortlessly. Various ad hoc implementa-
tions of BDI systems exist, but one important characteristic of AgentSpeak is its theoretical foundation;
work on formal verification of AgentSpeak systems is also underway (references are given throughout
this document). Another important characteristic of Jason in comparison with other BDI agent systems
is that it is implemented in Java (thus multi-platform) and is available Open Source, and is distributed
under GNU LGPL.
Besides interpreting the original AgentSpeak(L) language, Jason also features:

• strong negation, so both closed-world assumption and open-world are available;
• handling of plan failures;
• speech-act based inter-agent communication (and belief annotations on information sources);
• annotations on plan labels, which can be used by elaborate (e.g., decision theoretic) selection
functions;

• support for developing Environments (which are not normally to be programmed in AgentSpeak;
in this case they are programmed in Java);

• the possibility to run a multi-agent system distributed over a network (using SACI);
• fully customisable (in Java) selection functions, trust functions, and overall agent architecture
(perception, belief-revision, inter-agent communication, and acting);

• a library of essential “internal actions”;
• straightforward extensibility by user-defined internal actions, which are programmed in Java.

Besides, it is an implementation of the operational semantics, formally given to the AgentSpeak(L)
language and most of the extensions available in Jason.
This manual is still quite preliminary, and written in the form of something like a tutorial. It does

cover most of the features of the version of AgentSpeak available in the interpreter provided with
Jason, but some of them are only just mentioned, and the reader is referred to research papers where
the ideas are explained in more details. We decided to release Jason even though documentation was
still preliminary, and having done very little testing on the interpreter, because many colleagues were
in need of an AgentSpeak interpreter. Future releases of Jason will have better documentation, and
the interpreter should be better tested (in the long run, maybe even model checked, we hope!).
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1 Introduction

The idea of Agent-Oriented Programming was first discussed by Yoav Shoham [24]. Although agent-
oriented programming is still incipient, the whole area of multi-agent systems [30] has received a
great deal of attention from computer scientists in general in the last few years. Researchers in the
area of multi-agent systems think that the technologies emerging from the area are likely to influence
the design of computational system in very challenging areas of application, where such systems
are situated within very dynamic, unpredictable environments. From that perspective, agent-oriented
programming is likely to become a new major approach to the development of computational system
in the near future.
The language interpreted by Jason is an extension of AgentSpeak(L), an abstract agent language

originally devised by Rao [22], and subsequently extended and discussed in a series of papers by Bordini
and colleagues (e.g., [8, 3, 7, 18, 20, 5, 10, 6, 9]). AgentSpeak has a neat notation and is a thoughtful
(and computationally efficient) extension of logic programming to BDI agents [29, 25]. Jason is
a fully-fledged interpreter for AgentSpeak with many extensions making up for a very expressive
programming language for cognitive agents. Also, an interesting feature available with Jason is
that a multi-agent system can be easily configured to run on various hosts. This is accomplished
by the use of SACI, an agent communication infra-structure implemented by Jomi Hübner [15] (see
http://www.lti.pcs.usp.br/saci/).
This document is intended as Jason’s manual, but is structured more in the form of a (still rather

concise) tutorial. The next chapter gives an introduction the basics of AgentSpeak(L). Chapters 3 and 4
give the syntax allowed in agent and multi-agent systems specifications, respectively. In Chapter 5, we
discuss various aspects of agents, environment, and customising agents (using Java code). Chapter 6
provides brief instructions on how to install Jason.
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2 An Introduction to AgentSpeak(L)

2.1 Basic Notions

The AgentSpeak(L) programming language was introduced in [22]. It is a natural extension of logic
programming for the BDI agent architecture, and provides an elegant abstract framework for program-
ming BDI agents. The BDI architecture is, in turn, the predominant approach to the implementation of
“intelligent” or “rational” agents [29]. An AgentSpeak(L) agent is created by the specification of a set
of base beliefs and a set of plans. A belief atom is simply a first-order predicate in the usual notation,
and belief atoms or their negations are termed belief literals. An initial set of beliefs is just a collection
of ground belief atoms.

AgentSpeak(L) distinguishes two types of goals: achievement goals and test goals. Achievement and
test goals are predicates (as for beliefs) prefixed with operators ‘!’ and ‘?’ respectively. Achievement
goals state that the agent wants to achieve a state of the world where the associated predicate is true.
(In practice, these initiate the execution of subplans.) A test goal returns a unification for the associated
predicate with one of the agent’s beliefs; they fail otherwise. A triggering event defines which events
may initiate the execution of a plan. An event can be internal, when a subgoal needs to be achieved,
or external, when generated from belief updates as a result of perceiving the environment. There are
two types of triggering events: those related to the addition (‘+’) and deletion (‘-’) of mental attitudes
(beliefs or goals).

Plans refer to the basic actions that an agent is able to perform on its environment. Such actions
are also defined as first-order predicates, but with special predicate symbols (called action symbols)
used to distinguish them from other predicates. A plan is formed by a triggering event (denoting
the purpose for that plan), followed by a conjunction of belief literals representing a context. The
context must be a logical consequence of that agent’s current beliefs for the plan to be applicable.
The remainder of the plan is a sequence of basic actions or (sub)goals that the agent has to achieve
(or test) when the plan, if applicable, is chosen for execution.

+concert(A,V) : likes(A)
← !book tickets(A,V).

+!book tickets(A,V) : ¬busy(phone)
← call(V);

. . .;
!choose seats(A,V).

Figure 2.1: Examples of AgentSpeak(L) Plans

Figure 2.1 shows some examples of AgentSpeak(L) plans. They tell us that, when a concert is
announced for artist A at venue V (so that, from perception of the environment, a belief concert(A,V)
is added ), then if this agent in fact likes artist A, then it will have the new goal of booking tickets for
that concert. The second plan tells us that whenever this agent adopts the goal of booking tickets
for A’s performance at V, if it is the case that the telephone is not busy, then it can execute a plan
consisting of performing the basic action call(V) (assuming that making a phone call is an atomic
action that the agent can perform) followed by a certain protocol for booking tickets (indicated by
‘. . .’), which in this case ends with the execution of a plan for choosing the seats for such performance
at that particular venue.
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2.2. AGENTSPEAK(L) SYNTAX 3

ag ::= bs ps
bs ::= at1. . . . atn. (n ≥ 0)
at ::= P(t1, . . . ,tn) (n ≥ 0)
ps ::= p1 . . . pn (n ≥ 1)
p ::= te : ct <- h .
te ::= +at | -at | +g | -g
ct ::= true | l1 & . . . & ln (n ≥ 1)
h ::= true | f1 ; . . . ; fn (n ≥ 1)
l ::= at | not at
f ::= A(t1, . . . ,tn) | g | u (n ≥ 0)
g ::= !at | ?at
u ::= +at | -at

Figure 2.2: The Concrete Syntax of AgentSpeak(L).

2.2 AgentSpeak(L) Syntax

An AgentSpeak(L) agent specification ag is given by the grammar1 in Figure 2.2. In AgentSpeak(L), an
agent is simply specified by a set bs of beliefs (the agent’s initial belief base) and a set ps of plans
(the agent’s plan library). The atomic formulæ at of the language are predicates where P is a predicate
symbol, A is an action symbol, and t1, . . . , tn are standard terms of first order logic. Note that at in
bs must be ground (i.e., variables are not allowed).
A plan in AgentSpeak(L) is given by p above, where te is the triggering event, ct is the plan’s

context, and h is sequence of actions, goals, or belief updates; te : ct is referred as the head of the
plan, and h is its body. Then the set of plans of an agent is given by ps as a list of plans. Each
plan has in its head a formula ct that specifies the conditions under which the plan can be executed.
The formula ct must be a logical consequence of the agent’s beliefs if the plan is to be considered
applicable.
A triggering event te can then be the addition or the deletion of a belief from an agent’s belief

base (+at and −at, respectively), or the addition or the deletion of a goal (+g and −g, respectively).
A sequence h of actions, goals, and belief updates defines the body of a plan. We assume the agent
has at its disposal a set of actions and we use a as a metavariable ranging over them. They are given
as normal predicates except that an action symbol A is used instead of a predicate symbol. Goals g
can be either achievement goals (!at) or test goals (?at). Finally, +at and −at (in the body of a plan)
represent operations for updating (u) the belief base by, respectively, adding and removing at.

2.3 Informal Semantics

The AgentSpeak(L) interpreter also manages a set of events and a set of intentions, and its functioning
requires three selection functions. The event selection function (SE ) selects a single event from the
set of events; another selection function (SO) selects an “option” (i.e., an applicable plan) from a set
of applicable plans; and a third selection function (SI ) selects one particular intention from the set of
intentions. The selection functions are supposed to be agent-specific, in the sense that they should
make selections based on an agent’s characteristics (though previous work on AgentSpeak(L) did not
elaborate on how designers specify such functions2). Therefore, we here leave the selection functions
undefined, hence the choices made by them are supposed to be non-deterministic.
Intentions are particular courses of actions to which an agent has committed in order to handle

certain events. Each intention is a stack of partially instantiated plans. Events, which may start off
the execution of plans that have relevant triggering events, can be external, when originating from
perception of the agent’s environment (i.e., addition and deletion of beliefs based on perception are
external events); or internal, when generated from the agent’s own execution of a plan (i.e., a subgoal
in a plan generates an event of type “addition of achievement goal”). In the latter case, the event is
accompanied with the intention which generated it (as the plan chosen for that event will be pushed

1Note that this is just an introduction on the basics of the language. The grammar for AgentSpeak with all the extensions
supported in Jason will be given in Chapter 3. Also, the only addition to Rao’s original language used here are addition and
deletion of beliefs in the body of plans.
2Our extension to AgentSpeak(L) in [3] deals precisely with the automatic generation of efficient intention selection functions.

The extended language allows one to express relations between plans, as well as quantitative criteria for their execution. We
then use decision-theoretic task scheduling to guide the choices made by the intention selection function.



4 CHAPTER 2. AN INTRODUCTION TO AGENTSPEAK(L)

on top of that intention). External events create new intentions, representing separate focuses of
attention for the agent’s acting on the environment.
We next give some more details on the functioning of an AgentSpeak(L) interpreter, which is clearly

depicted in Figure 2.3 (reproduced from [18]). The pictorial description of such interpreter, given in
Figure 2.3, greatly facilitates the understanding of the interpreter for AgentSpeak(L) proposed by Rao.
In the figure, sets (of beliefs, events, plans, and intentions) are represented as rectangles. Diamonds
represent selection (of one element from a set). Circles represent some of the processing involved in
the interpretation of AgentSpeak(L) programs.
At every interpretation cycle of an agent program, AgentSpeak(L) updates a list of events, which

may be generated from perception of the environment, or from the execution of intentions (when
subgoals are specified in the body of plans). It is assumed that beliefs are updated from perception
and whenever there are changes in the agent’s beliefs, this implies the insertion of an event in the
set of events. This belief revision function is not part of the AgentSpeak(L) interpreter, but rather a
necessary component of the agent architecture.
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Figure 2.3: An Interpretation Cycle of an AgentSpeak(L) Program [18].

After SE has selected an event, AgentSpeak(L) has to unify that event with triggering events in the
heads of plans. This generates a set of all relevant plans. By checking whether the context part of the
plans in that set follow from the agent’s beliefs, AgentSpeak(L) determines a set of applicable plans
(plans that can actually be used at that moment for handling the chosen event). Then SO chooses a
single applicable plan from that set, which becomes the intended means for handling that event, and
either pushes that plan on the top of an existing intention (if the event was an internal one), or creates
a new intention in the set of intentions (if the event was external, i.e., generated from perception of
the environment).
All that remains to be done at this stage is to select a single intention to be executed in that cycle.

The SI function selects one of the agent’s intentions (i.e., one of the independent stacks of partially
instantiated plans within the set of intentions). On the top of that intention there is a plan, and the
formula in the beginning of its body is taken for execution. This implies that either a basic action
is performed by the agent on its environment, an internal event is generated (in case the selected
formula is an achievement goal), or a test goal is performed (which means that the set of beliefs has
to be checked).
If the intention is to perform a basic action or a test goal, the set of intentions needs to be

updated. In the case of a test goal, the belief base will be searched for a belief atom that unifies with
the predicate in the test goal. If that search succeeds, further variable instantiation will occur in the
partially instantiated plan which contained that test goal (and the test goal itself is removed from the



2.4. SIMPLE EXAMPLES 5

intention from which it was taken). In the case where a basic action is selected, the necessary updating
of the set of intentions is simply to remove that action from the intention (the interpreter informs
to the architecture component responsible for the agent effectors what action is required). When all
formulæ in the body of a plan have been removed (i.e., have been executed), the whole plan is removed
from the intention, and so is the achievement goal that generated it (if that was the case). This ends
a cycle of execution, and AgentSpeak(L) starts all over again, checking the state of the environment
after agents have acted upon it, generating the relevant events, and so forth.

2.4 Simple Examples

This section show two simple examples of programs written in AgentSpeak(L). The purpose here is
just to give examples of the use of the basic constructs of the language. The applications are very
simple, so as to be easily understood, but BDI programming is particularly interesting for complex
system in dynamic environments. The applications shown here are therefore not illustrative of typical
BDI oriented programming, but rather an attempt to show in practice the various constructs of the
language. Both examples (given in the next two section) were first used in papers that introduced
model-checking techniques for AgentSpeak. The application in Section 2.4.1 was first presented in [6],
and the one in Section 2.4.2 in [5]. Both of these applications are available as runnable examples in
Jason’s distribution (note that the examples available in the distribution might be slightly improved
from the ones below, as we use them to test new features introduced in Jason).

2.4.1 Collecting Garbage

The scenario used here involves two robots that are collecting garbage on planet Mars, and was first
used in [6]. Robot r1 searches for pieces of garbage and when one is found, the robot picks it up,
take it to the location of r2, drops the garbage there, and return to the location where it found the
garbage and continues its search from that position. Robot r2 is situated at an incinerator; whenever
garbage is taken to its location by r1, r2 just puts it in the incinerator. One or two pieces of garbage
are randomly scattered on the grid. Another source of non-determinism is a certain imprecision of
the robot’s arm that grabs the pieces of garbage. The action of picking up garbage may fail, but it
is assumed that the mechanism is good enough so that it never fails more than twice; that is, in the
worst case robot r1 has to attempt to pick up a piece of garbage three times, but by then r1 will
definitely have grabbed it). The AgentSpeak(L) code for r1 is given in below; we have annotated each
plan with a label, so that we can refer to them in the text below.

Agent r1
Beliefs
pos(r2,2,2).
checking(slots).

Plans
+pos(r1,X1,Y1) : checking(slots) & not garbage(r1) (p1)

<- next(slot).

+garbage(r1) : checking(slots) (p2)
<- !stop(check);

!take(garb,r2);
!continue(check).

+!stop(check) : true (p3)
<- ?pos(r1,X1,Y1);

+pos(back,X1,Y1);
-checking(slots).

+!take(S,L) : true (p4)
<- !ensure_pick(S);

!go(L);
drop(S).

+!ensure_pick(S) : garbage(r1) (p5)
<- pick(garb);

!ensure_pick(S).
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+!ensure_pick(S) : true <- true. (p6)

+!continue(check) : true (p7)
<- !go(back);

-pos(back,X1,Y1);
+checking(slots);
next(slot).

+!go(L) : pos(L,Xl,Yl) & pos(r1,Xl,Yl) (p8)
<- true.

+!go(L) : true (p9)
<- ?pos(L,Xl,Yl);

moveTowards(Xl,Yl);
!go(L).

The only initial beliefs this agent needs is on the position of agent r2 on the “grid” into which the
territory is divided, and that, to start with, what it is doing is to check all the slots in the territory grid
for garbage. All the plans are explained below.

Plan p1 is used when the agent perceives that it is in a new position and its currently checking for
garbage. If there is no garbage perceived in that slot, all it has to do is a basic action next(slot)
which moves the robot to the next slot in the grid, except the one where the incinerator is: garbage in
that position is dealt with by robot r2. Note that this is a basic action from the point of view of the
agent’s reasoning: it is assumed that the robot has the mechanisms to move itself to a next position
on the territory grid, automatically skipping the incinerator’s position.

The environment provides percepts stating whether a piece of garbage is present in r1 or r2’s
position. When r1 perceives garbage in its position, a belief garbage(r1) is added to its belief base,
hence plan p2 can be used (if the agent is still in its operation mode where it is checking for garbage,
rather then moving them to r2 or coming back). The task of dealing with a perceived piece of garbage
is accomplished in three parts. It involves achieving subgoals which: (i) make sure that the robot will
stop checking for garbage in a consistent manner (e.g., remembering where it was so that the task of
continuing the search can be resumed); (ii) actually taking the garbage (garb) to r2; and (iii) resuming
the task of checking the slots for garbage. Each of these goals are achieved by the following three
plans respectively.

When the agent intends to achieve subgoal (i) above, plan p3 is its only option, and it is always
applicable (i.e., it has an empty context). The agent retrieves from its belief base its own current
position (which will be in its belief base from perception of the environment). It then makes a note to
itself of where is the position it will need to go back to when it is to resume searching for garbage.
This is done by adding a belief to its belief base: +pos(back,X1,Y1). It also removes from its belief
base the information that it is presently searching for garbage, as this is no longer true (it will soon
intend to take the garbage to r2 and then go back).

Subgoal (ii) is achieved by plan p4, which states that in order for the robot to take garbage to r2,
it should pick it up, then achieve the subgoal of going to the position where r2 is, and when r1 is
there, it can finally drop the garbage. Note that pick(garb) and drop(garb) are again basic actions,
i.e., things that are assumed the robot can “physically” perform in the environment, by means of its
hardware apparatus.

Plans p5 and p6 together ensure that the robot will keep trying to pick up a piece of garbage until
it can no longer perceive garbage on the grid (i.e., the grabbing mechanism succeeded). Recall that
the grabbing mechanism is imprecise, so the robot may need to try a few times before it succeeds.

Plan p7 is used for the agent to continue the task of checking the grid slots for garbage. The agent
needs to achieve the subgoal of going back to its previous position (!go(back)), and once there, it
can remove the note it has made of that position, remember itself that it is now again checking the
slots for garbage, and then proceed to the next slot.

The last two plans are used for achieving the goal of going to a specific position on the grid where
L is located. Plan p9 retrieves the belief the agent has about the location of reference L, then move
itself towards those coordinates moveTowards(Xl,Yl), and keep going towards L (this is a recursive
goal). Plan p8 provides the end of the recursion, saying that there is nothing else to do in order to
achieve the goal of going towards L, if agent r1 is already at that position.

Agent r2 is defined by the very simple AgentSpeak(L) code below. All it does is to burn the pieces
of garbage (burn(garb)) when it senses that there is garbage on its location (+garbage(r2)).



2.4. SIMPLE EXAMPLES 7

Agent r2
+garbage(r2) : true

<- burn(garb).

All it does is to burn the pieces of garbage (burn(garb)) when it senses that there is garbage on
its location. A belief +garbage(r2) is added to the agent’s belief base by belief revision (from the
perception of the environment).

2.4.2 An Abstract Auction Model

In this section, we describe a simplified auction scenario, first used in [5]. The simple environment
announces 10 auctions and simply states which agent is the winner in each one (the one with the
highest bid). There are three agents participating in these auctions, with three simplified bidding
strategies.

Agent ag1
+auction(N) : true

<- place_bid(N,6).

Agent ag1 is a very simple agent which bids 6 whenever the environment announces a new auction.

Agent ag2
myself(ag2).
bid(ag2,4).
ally(ag3).

+auction(N) : myself(I) & ally(A) & not alliance(A,I)
<- ?bid(I,B); place_bid(N,B).

+auction(N) : alliance(A,I)
<- place_bid(N,0).

+alliance(A,I) : myself(I) & ally(A)
<- ?bid(I,B);

.send(A,tell,bid(I,B));

.send(A,tell,alliance(A,I)).

Agent ag2 bids 4, unless it has agreed on an alliance with ag3, in which case it bids 0. When
ag2 receives a message from ag3 proposing an alliance, a belief alliance(ag3,ag2) is added to ag2’s
belief base (the default trust function is used). That is a triggering event to the last plan, which informs
ag3 of how much ag2 was bidding, and confirms that ag2 agrees to form an alliance with ag3.

Agent ag3
myself(ag3).
bid(ag3,3).
ally(ag2).
threshold(3).

+auction(N) : threshold(T) & N < T
<- !bid_normally(N).

+auction(N) : myself(I) & winner(I)
& ally(A) & not alliance(I,A)

<- !bid_normally(N).

+auction(N) : myself(I) & not winner(I)
& ally(A) & not alliance(I,A)

<- !alliance(I,A);
!bid_normally(N).

+auction(N) : alliance(I,A)
<- ?bid(I,B); ?bid(A,C);

D = B+C; place_bid(N,D).
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+!bid_normally(N) : true
<- ?bid(I,B); place_bid(N,B).

+!alliance(I,A) : true
<- .send(A,tell,alliance(I,A)).

Agent ag3 tries to win the first T auctions, where T is a threshold stored in its belief base. If it
is does not win any auctions up to that point, it will try to achieve an alliance with ag2 (by sending
the appropriate message to it). When ag2 confirms that it agrees to form an alliance, then ag3 starts
bidding, on behalf of them both, with the sum of their usual bids.

2.5 Recent Research on AgentSpeak

Since Rao’s original proposal [22], a number of authors have investigated a range of different aspects
of AgentSpeak(L). In [12], a complete abstract interpreter for AgentSpeak(L) was formally specified
using the Z specification language. Most of the elements in that formalisation had already appeared
in [11]; this highlights the fact that AgentSpeak(L) is strongly based on the experiences with the
BDI-inspired dMARS [16] system, a successor of PRS [13].
Some extensions to AgentSpeak(L) were proposed in [3], and an interpreter for the extended

language was introduced. The extensions aim at providing a more practical programming language;
the extended language also allows the specification of relations between plans and quantitative criteria
for their execution. The interpreter then uses decision-theoretic task scheduling for automatically
guiding the choices made by an agent’s intention selection function.
In [19], an operational semantics for AgentSpeak(L) was given following Plotkin’s structural ap-

proach; this is a more familiar notation than Z for giving semantics to programming languages. Later,
that operational semantics was used in the specification of a framework for carrying out proofs of
BDI properties of AgentSpeak(L) [7]. The particular combination of asymmetry thesis principles [23]
satisfied by any AgentSpeak(L) agent was shown in [7], and later in [8], where detailed proofs were
included. This is relevant in assuring the rationality of agents programmed in AgentSpeak(L) based on
the principles of rationality from the point of view of the BDI theory. In [20], the operational semantics
of AgentSpeak(L) was extended to give semantics to speech-acts based inter-agent communication.
Recently, a toolkit called CASP was introduced which allows the use of model checking techniques

for the automatic verification of AgentSpeak(L)-like programs [10]. Those tools translate a simplified
version of AgentSpeak(L) into the input language of existing model checkers for linear temporal logic.
The translation to Promela was presented in [5], and the translation to Java in [6]. The actual model
checking is then done by Spin [14] in the first case, and JPF2 [28] in the second. This work on model
checking AgentSpeak(L) programs uses the definitions of the BDI modalities in terms of the operational
semantics of AgentSpeak(L), as defined in [8] to show precisely how the BDI specifications to be verified
against systems of multiple AgentSpeak(L) agents are interpreted.
At the moment, few applications have been developed with AgentSpeak(L), given that only recently

it has been implemented in practice, and is still in need of a great deal of experimentation in order
to make it a powerful programming language. In fact, the same applies to other agent oriented
programming languages; although work in the area has been going on since the early 90’s, a large
number of issues still remain to be clarified and properly sorted out. Among the existing application
developed with AgentSpeak(L) we can mention a simulation of social aspects of urban growth [9], and
a storehouse robot in a virtual reality environment [26]. The former was developed as a test case
for the MAS-SOC platform for agent-based social simulation, which is based on AgentSpeak(L) for the
implementation of individual agents. The latter was used as a test case for a two-layered architecture
which uses an AgentSpeak(L) interpreter at one level, and has an articulated system for modelling
3D characters in virtual environments at the other level. Such architecture is aimed at allowing the
use of sophisticated autonomous agents in virtual reality systems or other applications based on 3D
animations.
The reason for the little use of AgentSpeak in the development of practical application is certainly

related to the fact that, before this release of Jason, there was no fully-fledged interpreter for
AgentSpeak available. Also, being based on Java and available Open Sourcemakes Jason particularly
interesting for the development of multi-agent system for large scale applications.



3 Jason’s AgentSpeak Language

3.1 Syntax

The BNF grammar below gives the AgentSpeak syntax that is accepted by Jason. Below, <ATOM> is an
identifier beginning with an lowercase letter or ‘.’, <VAR> (i.e., a variable) is an identifier beginning with
an uppercase letter, <NUMBER> is any integer or floating-point number, and <STRING> is any string
enclosed in double quote characters as usual.

agent → ( init_bels | init_goals )* plans
init_bels → beliefs rules
beliefs → ( literal "." )*
rules → ( literal ":-" log_expr ".")*
init_goals → ( "!" literal "." )*
plans → ( plan )*
plan → [ "@" atomic_formula ] triggering_event [ ":" context ] [ "<-" body ] "."
triggering_event → ( "+" | "-" ) [ "!" | "?" ] literal
literal → [ "~" ] atomic_formula
context → log_expr | "true"
log_expr → simple_log_expr

| "not" log_expr
| log_expr "&" log_expr
| log_expr "|" log_expr
| "(" log_expr ")"

simple_log_expr → ( literal | rel_expr | <VAR> )
body → body_formula ( ";" body_forumula )*

| "true"
body_formula → ( "!" | "?" | "+" | "-" | "-+" ) literal

| atomic_formula
| <VAR>
| rel_expr

atomic_formula → ( <ATOM> | <VAR> ) [ "(" list_of_terms ")" ] [ "[" list_of_terms "]" ]
list_of_terms → term ( "," term )*
term → literal

| list
| arithm_expr
| <VAR>
| <STRING>

list → "[" [ term ( "," term )* [ "|" ( list | <VAR> ) ] ] "]"

rel_expr → rel_term ("<"|"<="|">"|">="|"=="|"\\=="|"=") rel_term
rel_term → (literal|arithm_expr)
arithm_expr → arithm_term [ ( "+" | "-" ) arithm_expr ]
arithm_term → arithm_factor [ ( "*" | "/" | "div" | "mod" ) arithm_term ]
arithm_factor → arithm_simple [ "**" arithm_factor ]
arithm_simple → <NUMBER>

| <VAR>
| "-" arithm_simple
| "(" arithm_expr ")"

N.B.: This grammar is a slightly more readable version then the one actually used in the parser.
The BNF for the grammar used in the parsers can be found in file AS2JavaParser.html located
in the doc folder of the distribution.

9
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Also, in the production rule for beliefs, note that a semantic error is generated if the literal
was not ground.

The main differences to the original AgentSpeak(L) language are as follows. Wherever an atomic
formulæ1 was allowed in the original language, here a literal is used instead. This is either an atomic
formulæ p(t1,. . .,tn), n ≥ 0, or ~p(t1,. . .,tn), where ‘~’ denotes strong negation

2. Default
negation is used in the context of plans, and is denoted by ‘not’ preceding a literal. The context is
therefore a conjunction of default literals. For more details on the concepts of strong and default
negation, plenty of references can be found, e.g., in the introductory chapters of [17]. Terms now
can be variables, lists (with Prolog syntax), as well as integer or floating point numbers, and strings
(enclosed in double quotes as usual); further, any atomic formulæ can be treated as a term, and (bound)
variables can be treated as literals (this became particularly important for introducing communication,
but can be useful for various things). Infix relational operators, as in Prolog, are allowed in plan
contexts. Also as in Prolog, is used as anonymous variable.
Also, a major change is that atomic formulæ now can have “annotations”. This is a list of terms

enclosed in square brackets immediately following the formula. Within the belief base, annotations are
used, e.g., to register the sources of information. A term source(s) is used in the annotations for
that purpose; s can be an agent’s name (to denote the agent that communicated that information), or
two special atoms, percept and self, that are used to denote that a belief arose from perception of
the environment, or from the agent explicitly adding a belief to its own belief base from the execution
of a plan body, respectively. The initial beliefs that are part of the source code of an AgentSpeak
agent are assumed to be internal beliefs (i.e., as if they had a [source(self)] annotation), unless the
belief has any explicit annotation given by the user (this could be useful if the programmer wants the
agent to have an initial belief about the environment or as if it had been communicated by another
agent). Fore more on the annotation of sources of information for beliefs, see [21].
Clearly, because of annotations, unification becomes slightly more complicated. When attempt-

ing to unify an atomic formula at1 with annotations s11, . . . , s1n against another atomic formula
at2[s21, . . . , s2m], not only must at1 unify with at2 in the usual ways (cf. unification in Prolog),
but it also must be the case that {s11, . . . , s1n} ⊆ {s21, . . . , s2m}. Suppose for example that
at1 appears in a plan context and at2 is in the belief base. The intuition is that not only should
at1 unify with at2, but also that all specified sources of information for at1 should be corrobo-
rated by at2. So, for example, p(X)[ag1] follows from {p(t)[ag1,ag2]}, but p(X)[ag1,ag2]
does not follow from {p(t)[ag1]}. More concretely, if a plan requires, for being applica-
ble, that a drowning person was explicitly perceived rather than communicated by another agent
(which can be represented by drowning(Person)[source(percept)]), that follows from a belief
drowning(man)[source(percept),source(passerby)] (i.e., that this was both perceived and com-
municated by a passerby). On the other hand, if the required context was that two independent sources
provided the information, say cheating(Person)[source(witness1),source(witness2)], this
cannot be inferred from a belief cheating(husband)[source(witness1)]. Fore more on unifi-
cation in the presence of annotations, see [27].
More generally, instead of an agent being a set of initial beliefs and a set of plans, agents

now can also have initial goals, which should appear between the initial beliefs and the plans. Initial
goals are like beliefs except that they are prefixed with ”!”, and they do not need to be ground.
Another substantial change in comparison to the original, abstract AgentSpeak(L) language, is that
the belief base now can have Prolog-like rules, and the same syntax used in the body of the
rules can also be used in plan contexts. The syntax is slightly different from Prolog, for example
“c(X) :- a(X) & not(b(X) | c(X)).”.
The “+” and “-” operators, in plan bodies, are used for addition and deletion of beliefs that work

as “mental notes” of the agent itself (and receive the “self” annotation as described above). The
operator “-+” adds a belief after removing (the first) existing occurrence of that belief in the belief
base. For example, “-+a(X+1)” first removes a( ) from, and adds a(X+1) to, the belief base; this is
quite useful in practice (e.g., for counter-like beliefs).
Variables now can be used in most places where an atomic formula is expected, including triggering

events, context and body of plans. An abstract example of the various places where a variable can be
used is:

+P[source(A),hinders(G)] : .desire(G) <- !~P; .send(A,tell,~P).

1Recall that actions are special atomic formulæ with an action symbol rather than a predicate symbol. What we say next only
applies to usual predicates, not actions.
2Note that for an agent that uses Closed-World Assumption, all the user has to do is not to use literals with strong negation

anywhere in the program, nor negated percepts in the environment (see “Creating Environments” under Section 5.4).
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which means that whenever any new belief P is informed to our agent by an agent A, and that belief
P is annotated with the fact that it is known to hinder a goal that this agent currently has, it tries to
achieve a state of affairs in which the negation of that belief P is true, but at least it informs A that now

~P is true instead. In the context or body, one can also use a variable in place of an atomic formula
but keep the annotations explicit, as in the following examples where unification is to be attempted:

X[a,b,c] = p[a,b,c,d] (unifies and X is p)
p[a,b] = X[a,b,c] (unifies and X is p)
X[a,b] = p[a] (does not unify)
p[a,b] = X[a] (does not unify)

In fact, annotations can be treated as an ordinary lists, so it is possible to use constructs such as:

p(t)[a,b,c] = p(t)[b|R] (unifies and R is [a,c])

As in Prolog, the =.. operator can be used to (de)construct literals, the syntax being
<literal> =.. <list>, where <list> is [<functor>, <list of terms>, <list of annots>],
for example:

p(t1,t2)[a1,a2] =.. L (L is [p,[t1,t2],[a1,a2]])
X =.. [p,[t1,t2],[a1,a2]] (X is p(t1,t2)[a1,a2])

Note that “true” in the context or body of a plan (to denote empty context or body) can now be
omitted, so

+e : c <- true.
+e : true <- !g.
+!e : true <- true.

can be written as

+e : c.
+e <- !g.
+!e.

Further, plans have labels, as first proposed in [3]. However, a plan label can now be any atomic
formula, including annotations, although we suggest that plan labels use annotations (if necessary)
but have a predicate symbol of arity 0, as in aLabel or anotherLabel[chanceSuccess(0.7),
expectedPayoff(0.9)]. Annotations in formulæ used as plan labels can be used for the implementa-
tion of sophisticated applicable plan (i.e., option) selection functions. Although this is not yet provided
with the current distribution of Jason, it is straightforward for the user to define, e.g., decision-
theoretic selection functions; that is, functions which use something like expected utilities annotated in
the plan labels to choose among alternative plans. The customisation of selection functions is done in
Java (by choosing a plan from a list received as parameter by the selection functions), and is explained
in Section 5.1. Also, as the label is part of an instance of a plan in the set of intentions, and the
annotations can be changed dynamically, this provides all the means necessary for the implementation
of efficient intention selection functions, as the one proposed in [3]. However, this also is not yet
available as part of Jason’s distribution, but can be set up by users with some customisation.
Note that for an agent that uses Closed-World Assumption, all the user has to do is not to use

literals with strong negation anywhere in the program, nor negated percepts in the environment (see
Section 5.4).
Events for handling plan failure are already available in Jason, although they are not formalised

in the semantics yet. If an action fails or there is no applicable plan for a subgoal in the plan being
executed to handle an internal event with a goal addition +!g, then the whole failed plan is removed
from the top of the intention and an internal event for -!g associated with that same intention
is generated. If the programmer provided a plan that has a triggering event matching -!g and is
applicable, such plan will be pushed on top of the intention, so the programmer can specify in the
body of such plan how that particular failure is to be handled. If no such plan is available, the whole
intention is discarded and a warning is printed out to the console. Effectively, this provides a means
for programmers to “clean up” after a failed plan and before “backtracking” (that is, to make up for
actions that had already been executed but left things in an inappropriate state for next attempts
to achieve the goal). For example, for an agent that persist on a goal !g for as long as there are
applicable plans for +!g, suffices it to include a plan -!g : true <- !g. in the plan library. Note
that the body can be empty as a goal is only removed from the body of a plan when the intended
means chosen for that goal finishes successfully. It is also simple to specify a plan which, under specific
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condition, chooses to drop the intention altogether (by means of a standard internal action mentioned
below).
Finally, as also introduced in [3], internal actions can be used both in the context and body of

plans. Any action symbol starting with ‘.’, or having a ‘.’ anywhere, denotes an internal action. These
are user-defined actions which are run internally by the agent. We call them “internal” to make a clear
distinction with actions that appear in the body of a plan and which denote the actions an agent can
perform in order to change the shared environment (by means of its “effectors”). In Jason, internal
actions are coded in Java, as explained in Section 5.3, or indeed other programming language through
the use of JNI (Java Native Interface), and they can be organised in libraries of actions for specific
purposes (the string to the left of ‘.’ is the name of the library; standard internal actions have an empty
library name). The next section mentions some of the standard internal actions that are distributed
with Jason.

3.2 Standard Internal Actions

We no longer include these in the manual as they are well documented in the API. To see a list of all
available standard internal actions, open file doc/api/index.html of the Jason distribution using a
web browser, then click on the jason.stdlib pacakge.

3.3 Standard Plan Annotations

As mentioned above, annotations in plan labels can be used to associate meta-level information
about the plans, so that the user can write selection functions that access such information for
choosing among various relevant/applicable plans or indeed intentions. Jason provides two pre-
defined annotations which, when place in the annotations of a plan’s label, affect the way that plan is
interpreted by Jason. These pre-defined plan label annotations are:

atomic: if an instance of a plan with an atomic annotation is chosen for execution by the intention
selection function, this intention will be selected for execution in the subsequent reasoning cycles
until that plan is finished — note that this overrides any decisions of the intention selection
function in subsequent cycles (in fact, the interpreter does not even call the intention selection
function after an atomic plan began to be executed). This is quite handy in cases where the
programmer needs to guarantee that no other intention of that agent will be executed inbetween
the execution of the formulæ in the body of that plan.

breakpoint: this is very handy in debugging: if the debug mode is begin used (see Section 4.2), as
soon as any of the agents start executing an intention with an instance of a plan that has a
breakpoint annotation, the execution stops and the control goes back to the user, who can
then use the “step” and “run” buttons to carry on the execution.

all unifs: is used to include all possible unifications that make a plan applicable in the set of applicable
plans. Normally, for one given plan, only the first unification found is included in the set
of applicable plans. In normal circumstances, the applicable-plan selection function is used to
choose between different plans, all of which are applicable. If you have created a plan for which
you want the applicable-plan selection function to consider which is the best unification to be
used as intended means for the given event, then you should included this special annotation in
the plan label.



4 Defining and Running Multi-Agent Systems

In this chapter, we explain how the user can define a system of multiple AgentSpeak agents to be run
with Jason. A multi-agent system should have an environment where all AgentSpeak agents will be
situated, and a set of instances of AgentSpeak agents. The environment should be programmed in
Java1, as explained in the next chapter. The configuration of the whole multi-agent system is given by
a very simple text file, as described next.

4.1 Syntax

The BNF grammar below gives the syntax that can be used in the configuration file of a multi-agent
system. Configuration files must have a name with extension .mas2j. Below, <NUMBER> is used for
integer numbers, <ASID> are AgentSpeak identifiers, which must start with a lowercase letter, <ID> is
any identifier (as usual), and <PATH> is as required for defining file pathnames in ordinary operating
systems.

mas → "MAS" <ID> "{"
[ infrastructure ]
[ environment ]
[ exec_control ]
agents

"}"
infrastructure → "infrastructure" ":" <ID>
environment → "environment" ":" <ID> [ "at" <ID> ]
exec_control → "executionControl" ":" <ID> [ "at" <ID> ]
agents → "agents" ":" ( agent )+
agent → <ASID>

[ filename ]
[ options ]
[ "agentArchClass" <ID> ]
[ "beliefBaseClass" <ID> ]
[ "agentClass" <ID> ]
[ "#" <NUMBER> ]
[ "at" <ID> ]
";"

filename → [ <PATH> ] <ID>
options → "[" option ( "," option )* "]"
option → "events" "=" ( "discard" | "requeue" | "retrieve" )

| "intBels" "=" ( "sameFocus" | "newFocus" )
| "nrcbp" "=" <NUMBER>
| "verbose" "=" <NUMBER>
| <ID> "=" ( <ID> | <STRING> | <NUMBER> )

The <ID> used after the keyword MAS is the name of the society; this is used, among other things,
in the name of the scripts that are automatically generated to help the user compile and run the
system, as described in the next two sections. The keyword infrastructure is used to specify which
of the underlying infrastructures for running a multi-agent system will be used. The options currently
available in Jason’s distribution are either “Centralised” or “Saci”: the former is the default option,
and the latter should be used if you need (some) agents to run on different machines over a network.

1 In the MAS-SOC social simulation tool, environments can be defined in ELMS, by means of a graphical interface, where also
AgentSpeak agents can be defined. MAS-SOC should be made available soon, and is described in [9].

13
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Users may define other system infrastructures, although these two should cover for most general
purposes.
Next an environment can be specified. This is simply the name of Java class that was used for

programming the environment, normally. Although not indicated explicitly in the grammar, it is possible
to specify arguments (as in a Java method invocation), in which case the environment implementation
will receive the data in the init method, which is useful for initialisation of the simulated environment
for a given multi-agent systems configuration (see the Jason’s FAQ for more details on environment
with parameters). Note that an optional host name where the environment will run can be specified.
This is only available if you use SACI as infrastructure. Section 5.4 explains how environments can
be easily created in Java. Then there is an optional executionControl definition, which allows user-
defined management of agents’ execution. Again what needs to be specified here is the name of a
Java class that implements such control; Jason’s FAQ explains how this is done (see doc/faq.html
of the distribution). Note that having an environment is optional; this might be useful e.g. for
deploying a Jason system in a real-world environment (of course this will require customising the
perception and acting functions).
The keyword agents is used for defining the set of agents that will take part in the multi-agent

system. An agent is specified first by its symbolic name given as an AgentSpeak term (i.e., an identifier
starting with a lowercase letter); this is the name that agents will use to refer to other agents in
the society (e.g. for inter-agent communication). Then, an optional filename can be given (it may
include a full path, if it is not in the same directory as the .mas2j file) where the AgentSpeak source
code for that agent is given; by default Jason assumes that the AgentSpeak source code is in file
<name>.asl, where <name> is the agent’s symbolic name. There is also an optional list of settings
for the AgentSpeak interpreter available with Jason (these are explain below). An optional number of
instances of agents using that same source code can be specified by a number preceded by #; if this
is present, that specified number of “clones” will be created in the multi-agent system. In case more
than one instance of that agent is requested, the actual name of the agent will be the symbolic name
concatenated with an index indicating the instance number (starting from 1). As for the environment
keyword, an agent definition may end with the name of a host where the agent will run (preceded by
“at”). As before, this is only available if the SACI-based infrastructure was chosen.
The following settings are available for the AgentSpeak interpreter available in Jason (they are

followed by ‘=’ and then one of the associated keywords, where an underline denotes the option used
by default):

events: options are either discard, requeue, or retrieve; the discard option means that external
events for which there are no applicable plans are discarded (a warning is printed out to the
console where SACI or the system was run), whereas the requeue option is used when such
events should be inserted back at the end of the list of events that the agent needs to handle. An
option retrieve is also available; when this option is selected, the user-defined selectOption
function is called even if the set of relevant/applicable plans is empty. This can be used, for
example, for allowing agents to request plan from other agents who may have the necessary
know-how that the agent currently lacks, as proposed in [1].

intBels: options are either sameFocus or newFocus; when internal beliefs are added or removed
explicitly within the body of a plan, if the associated event is a triggering event for a plan, the
intended means resulting from the applicable plan chosen for that event can be pushed on top
of the intention (i.e., focus of attention) which generated the event, or it could be treated as
an external event (as the addition or deletions of belief from perception of the environment),
creating a new focus of attention. Because this was not considered in the original version of the
language, and it seems to us that both options can be useful, depending on the domain area,
we left this as an option for the user. For example, by using newFocus the user can create,
as a consequence of a single external event, different intentions that will be competing for the
agent’s attention.

nrcbp: number of rasoning cycles before perception. Normally, the AgentSpeak(L) interepreter
assumes that belief revision happens before every reasoning cycle. When the environment of
one particular application is not very dynamic, users may want to prevent the agents from
spending time checking if there are new percepts to be “retrieved” from the environment. This
configuration parameter allows the user to set the number of reasoning cycles the agent will
carry out before the next time it does perception and belief revision (the default is, as in the
original conception of AgentSpeak(L), 1). The parameter could, obviously, be an artificially high
number so as to prevent perception and belief revision ever happening “spontaneously”. If users
set a high number for this parameter, it is likely they will need to code their plans to actively
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do perception and belief update, as happens in various other agent oriented programming
languages (note that in AgentSpeak(L) an agent will soon have incorrect information about the
world as, unlike other agent programming languages, you can use internal belief changes to
update the agent’s perception, which is quite coherent in our point of view). The internal action
.perceive() may be used to force the agent to do perception.

verbose: a number between 0 and 2 should be specified. The higher the number, the more information
about that agent (or agents if the number of instances is greater than 1) is printed out in the
Jason console. The default is in fact 1, not 0; verbose 1 prints out only the actions that agents
perform in the environment and the messages exchanged between them.

user settings: Users can create their own settings in the agent declaration, for example:

... agents: ag1 [verbose=2,file="an.xml",value=45];

These extra parameters are stored in the Settings class and can be consulted within the pro-
grammer’s classes by getUserParameter method, for example:

ts.getSettings().getUserParameter("file");

Finally, user-defined overall agent architectures and other user-defined functions to be used by the
AgentSpeak interpreter for each particular agent can be specified with the keywords agentArchClass,
beliefBaseClass, and agentClass. Jason provides great flexibility by allowing users to easily
redefining the default functions used in the interpreter. The way this can be done is explained in
Chapter 5.
Next, we mention the scripts that should be run for generating the Java code for the agents,

compiling them, and running the multi-agent system as specified in the .mas2j configuration file.

4.2 Compiling and Running a Multi-Agent System

Jason comes with an IDE which is a jEdit plugin (www.jedit.org). All you have to do is run jason.sh
or, under MS-Windows (if you must!) jason.bat — these scripts are included in the bin directory,
see Chapter 6. The IDE provides editing facilities for the MAS configuration file as well as AgentSpeak
code for the individual agents, and it also controls the execution of the MAS (all required compilation
is done automatically by the IDE). The graphical interface should be very intuitive to use, so we do
not include instructions on how to use the IDE here. We have kept below the original description of
what goes on “behind the scene”, as some users may prefer to do certain tasks by hand in particular
circumstances.
Jason has three different execution modes, two of which are also available through the GUI. Further,

the execution mode can be customised; Jason’s FAQ explains how to do that: see the faq.html in the
doc directory of Jason’s distribution. The GUI allows the system to be run as usual, but also step-by-
step; in the latter mode, called the debugging mode, the user has to click a button to allow all agents
to perform the next reasoning cycle. Running the system in debugging mode automatically opens
another tool, which is called the “mind inspector”. With this tool, the user can observe the changes in
the agents’ mental attitudes at every reasoning cycle (and this also applies to agents distributed over
a network). The interface has two buttons: “step” and “run”, the latter being particular useful with
breakpoint plan annotations (see Section 3.3).
We now described how the IDE actually runs a system. Once a multi-agent system is configured

as explained in the previous section, the first thing to be done is to run the script mas2j.sh which is
located in the bin directory of Jason’s distribution. It takes as parameter the name of the file where
the multi-agent system configuration can be found (recall that the file should have a .mas2j extension).
Any sophisticated agent will need customisation of selection functions and possibly overall archi-

tecture (which will be explained in the next chapter). In case the user needs to change the Java code
of those classes, or the Java code for the environment, those classes need to be compiled again, an
Ant script build.xml is create by mas2j.sh to compile and run the project.
N.B.: The AgentSpeak code is only read at run time, which means that if you change the

AgentSpeak code but do not change the multi-agent system configuration or agent customisa-
tions, you do not need to run mas2j.sh again. Just run the system with the script provided for
this, as mentioned above.



5 Agents, Overall Agent Architectures, and
Environments

From the point of view of an (extended) AgentSpeak interpreter, and agent is a set of beliefs, a set
of plans, some user-defined selection functions and trust function (a “socially acceptable” relation for
received messages), the Belief Update Function (which updates the agent’s belief base from perception
of the environment, and can be customised by the user) and the Belief Revision Function (which is
used, e.g., when the agent’s beliefs are changed from the execution of one of its plans, and should be
costumised to include algorithms found in the belief revision literature1) , and a “circumstance” which
includes the pending events, intentions, and various other structures that are necessary during the
interpretation of an AgentSpeak agent (formally given in [8]). The customisation of these aspects of
an agent is explained in Section 5.1.
However, for an agent to work effectively in a multi-agent system, the AgentSpeak interpreter

must be only the reasoning module within an “overall agent architecture” (we call it like this to avoid
confusion with the fact that BDI is the agent architecture, but this is just the cognitive part of the
agent, so to speak). Such overall agent architecture provides perception (which models the agent’s
“sensors”), acting (modelling the agent’s “effectors”), and how the agent receives messages from other
agents. These aspects can also be customised for each agent individually, as explained in Section 5.2.
The belief base itself can be customised, which can be quite important in large-scale applications.

There are two customisations available with the Jason distribution: one which stores the beliefs in a
text file (so as to persist the state of an agent’s belief base) and another which stores some of the
beliefs in a relational data base. This latter customisation can be used the access any relational data
base (via JDBC). The AgentSpeak code remains the same regardless of the belief base customisation.
We here do not explain how other customisations can be made, but in the examples folder of the
Jason distribution you will find the the ”persistentBelBase” example which illustrates how this can be
done.
Section 5.3 gives instructions on how to define new internal actions. Finally, in section 5.4 we

briefly explain how environments must be defined (this works for both the available infrastructures,
Saci and Centralised). While the description for this in the manual is very brief, looking at the
environments available in the examples distributed with Jason should make it clear how this should be
done.

5.1 Customising Agents

Unless customised agent classes in Java are provided by the user, the following default functions are
used. They show all the options for customisation that users are given by Jason.

// add code to the methods below to change this agent’s

// message acceptance relation and selection functions

public void buf(List percepts) {

// this functions needs to update the belief base

// with the given "percepts" and include in the set

// of events all changes that were actually carried out

}

public List[] brf(Literal add, Literal del, Intention i) {

/*

1Note that the default belief update and revision methods that come with Jason do not guarantee consistency of the belief
base; they simple perform all changes requested even if that results in a direct contradiction.
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This method should revise the belief base with a literal to be added

(if any), a literal to be deleted (if any), and the Intention structure

that required the belief change. In the return, List[0] has the list

of actual additions to the belief base, and List[1] has the list of

actual deletions; the returned lists are used by the interpreter to

generate the appropriate internal events.

*/

// the specific belief revision code goes here

}

public boolean socAcc(Message m) {

// docile and benevolent agent

return(true);

}

public Event selectEvent(Queue<Event> events) {

// make sure the selected Event is removed from events queue

return events.poll();

}

public Option selectOption(List<Option> options) {

// make sure the selected Option is removed from options

// normally there is no need to change this

return((Option)optList.remove(0));

}

public Intention selectIntention(Queue<Intention> intentions) {

// make sure the selected Intention is removed from ’intentions’ AND

// make sure no intention will "starve"!!!

return intentions.poll();

}

public Message selectMessage(Queue<Message> messages) {

// make sure the selected Message is removed from ’messages’

return messages.poll();

}

It is important to emphasise that the belief update function provided with Jason simply up-
dates the belief base and generates the external events (i.e., additions and deletion of beliefs
from the belief base) in accordance with current percepts. It does NOT guarantee belief consis-
tency. As it will be seen later in Section 5.4, percepts are actually sent from the environment, and
they should be lists of terms stating everything that is true (and explicitly false too, if closed-
world assumption is not used). It is up to the programmer of the environment to make sure that
contradictions do not appear in the percepts. Also, if AgentSpeak programmers use addition of
internal beliefs in the body of plans, it is their responsibility to ensure consistency. In fact, the
user may, in rare occasions, be interested in modelling a “paraconsistent” agent2, which can be
easily done.
Trust functions and the message selection function are discussed in [20], and the three first selection

functions are discussed in all of the AgentSpeak literature (see Chapter 2). By changing the message
selection function, the user can determine that the agent will give preference to messages from certain
agents, or certain types of messages, when various messages have been received during one reasoning
cycle. The last selection function was deemed interesting during the development of Jason. In the
system infrastructure that is based on SACI, the agent can go ahead with its reasoning after requesting
an action to be executed in the environment (that is, asynchronous communication is used between
the agent and the environment, which is the process that effectively executes the external action). This
means that we need, in the agent’s circumstance, another structure which stores the feedback from
the environment after the action has been executed (this tells the agent whether the attempted action
execution in the environment succeeded or not). In case more than one action feedback is received
from the environment during a reasoning cycle, the action selection function is used to choose which
action feedback will be chosen first to be considered in the next reasoning cycle. Notice that, as with
internal events, waiting for an action feedback makes an intention to become suspended. Only after

2The SimpleOpenWorld example distributed with Jason gives an abstract situation which includes this possibility.
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the feedback from the environment is received, that intention can be selected again for execution (by
the intention selection function).
Suppose, for example, that a user wants to redefine the event selection function only. All that

needs to be done is to create the following java file called, say, MyAgClass.java:

import java.util.*;
import jason.asSemantics.*;

/** example of agent function overriding */
public class MyAgClass extends Agent {

public Event selectEvent(Queue<Event> events) {
System.out.println("Selecting an event from "+events);
return events.poll();

}

}

and then specify agentClass MyAgClass in the agent’s entry in the .mas2j configuration file.

5.2 Customising Agent Architectures

Similarly, the user can customise the functions defining the overall agent architecture. These functions
handle the way the agent will receive percepts from the environment; how the agent gets messages
sent from other agents (for speech-act based inter-agent communication); and how the agent acts on
the environment (for the basic, i.e. external, actions that appear in the body of plans) — normally this
is provided by the environment implementation, so this function only has to pass the action selected
by the agent on to the environment.
For the perception function, it may be interesting to use the function defined in Jason’s distribution

and after it has received the current percepts, and then process further the list of percepts, in order
to simulate faulty perception, for example. Unless, of course, the environment has been modelled so
as to send different percepts to different agents, according to their perception abilities (so to speak)
within the given multi-agent system (as with ELMS environments, see [9]).
The methods of the agent architecture will rely on one of the existing multi-agent in-

frastructure/middleware. Files SaciAgArch.java and CentralisedAgArch.java in directory
src/jason/infra have specific implementations for these four methods, according the the underlying
infrastructure (based on SACI or using threads in the local host, respectively). Looking at those files
may be helpful for programmers intending to use other multi-agent infrastructures (e.g., JADE [2]),
but this is not yet documented.
The following code shows the options available to the user for customisation:

// add code to the methods below to change this agent’s

// perception, mail checking, and acting functions

public List<Literal> perceive() {

}

public void checkMail() {

}

// Executes the action <i>action</i> and, when finished,

// add it back in feedback actions.

public void act(ActionExec action, List<ActionExec> feedback) {

}

To customise any of the functions mentioned above, create a Java file named, e.g., MyAgArch.java
as follows:

import jason.architecture.*;

/** example of agent architecture’s functions overriding */
public class MyAgArch extends AgArch {
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public List<Literal> perceive() {
List<Literal> p = super.perceive();
// change list p by adding/removing literals to
// simulate faulty perception, for example
return p;

}

}

and then add agentArchClass MyAgArch to the agent’s entry in the configuration file.

5.3 Defining New Internal Actions

An important construct for allowing AgentSpeak agents to remain at the right level of abstraction, is
that of internal actions. As suggested in [3], internal actions that start with ‘.’ are part of a standard
library of internal actions; these are distributed with Jason, in directory src/jason/stdlib. Internal
actions defined by users should be organised in specific libraries, as described below. In the AgentSpeak
code, the action is accessed by the name of the library, followed by ‘.’, followed by the name of the
action.
Libraries are defined as Java packages and each action in the user library should be a Java class

within that package, the name of the package and class are the names of the library and action as it
will be used in the AgentSpeak programs. Recall that all identifiers starting with an uppercase letter in
AgentSpeak denote variables, so the name of the library must start with a lowercase letter. All classes
defining internal actions should look something like:

package <LibraryName>;

import jason.asSyntax.*;

import jason.asSemantics.*;

public class <ActionName> extends DefaultInternalAction {

public Object execute( TransitionSystem ts, Unifier un,

Term[] args ) throws Exception {

...

}

}

It is important that the class has an execute method declared exactly as above. Each agent creates
an instance of the class the first time that internal action is executed; this means that an internal action
can keep a state within the agent.
As expected, <LibraryName> in the example above is the name of the library (the newly created

directory inside ulibs), and <ActionName> is the name of the particular action being defined in this
Java file. The internal action’s arguments are passed as an array of Termss. Note that this is the
third argument of the execute method. The first argument is the transition system (as defined by the
operational semantics of AgentSpeak), which contains all information about the current state of the
agent being interpreted. The second is the unifying function currently determined by the execution of
the plan, or the checking of whether the plan is applicable3; the unifying functions is important in case
the value binded to AgentSpeak variables need to be used in the implementation of the action.
This makes Jason’s AgentSpeak extensible in a very straightforward way. Looking at the examples

in stdlib should make it fairly easy for users to implement their own internal actions.

5.4 Creating Environments

Besides programming a set of AgentSpeak agents, and providing the multi-agent system configuration
file, in order to have a complete computational system4, the user needs to create an environment. This
is done directly in Java, and a class providing an environment, typically looks like:

3This depends on whether the internal action being run appears int the body or the context of a plan.
4AgentSpeak can in principle be used for agents or robots that act on real environments. Models of environments are of

course necessary if the whole system is an application aimed at running on (a network of) computers.
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import java.util.*;

import jason.asSyntax.*;

import jason.environment.*;

public class <EnvironmentName> extends Environment {

// any class members you may need

public <EnvironmentName>() {

// setting initial percepts ...

addPercept(Literal.parseLiteral("p(a)"));

// if you are using open-world...

addPercept(Literal.parseLiteral("~q(b)"));

// if this is to be perceived only by agent ag1

addPercept("ag1", Literal.parseLiteral("p(a)"));

...

}

public boolean executeAction(String ag, Term act) {

...

}

// any other methods you may need

}

where <EnvironmentName> is the name of the environment class specified in the multi-agent system
configuration file.
Both positive and negative percepts (for creating an open-world multi-agent system) are included

in the same list (negative percepts are literals with the strong negation operator ‘~’). It is normally
appropriate to use the class constructor to initialise the lists of percepts, and use the parseLiteral
method of the Literal class, as in the environments available in the examples directory of Jason’s
distribution. Further, the Environment class supports individualised perception, greatly facilitating the
task for the user to give certain percepts only to certain agents. The following methods can be used
in the user’s environment:

addPercept(L): add literal L to the global list of percepts; that is, all agents will perceive L;

addPercept(A,L): add literal L to the list of percepts that are exclusive to agent A; that is, only A
will be able to perceive L;

removePercept(L): remove literal L from the global list of percepts;

removePercept(A,L): remove literal L from the list of percepts that are exclusive to agent A;

clearPercepts(): delete all percepts in the global list of percepts;

clearPercepts(A): delete all percepts in the list of percepts that are exclusive to agent A.

Note that only instances of the class Literal, which is part of the jason package, should be
added to the lists of percepts using these methods! Normally, you should not add any annotations
here, as all percepts will be received by the agents with a [source(percept)] annotation. Also, the
access to the lists of percepts are automatically synchronised, but depending on how you model
your environment you may need further synchronisation in the executeAction() method.
Most of the code for building environments should be (referenced at) the body of the method

executeAction which must be declared as described above. Whenever an agent tries to execute a basic
action (those which are supposed to change the state of the environment), the name of the agent and
a Term representing the chosen action are sent as parameter to this method. So the code for this
method needs to check the Term (having the form of a Prolog “structure”) which represents the action
(and any required parameters) being executed, and check which is the agent attempting to execute
the action, then do whatever is necessary in that particular model of an environment — normally, this
means changing the percepts, i.e., what is true or false of the environment is changed according to
the actions being performed. Note that the execution of an action needs to return a boolean value,
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stating whether the agent’s attempt at performing that action on the environment was successful or
not. A plan fails if any basic action attempted by the agent fails.
Just a few more comments on environments with individualised perception, i.e., the fact that in

programming the environment you can determine what subset of the environment properties will
be perceptible to individual agents. Recall that within and agent’s overall architecture you can further
customise what beliefs the agent will actually aquire from what it perceives. Intuitively, the environment
properties available to an agent from the environment definition itself are associated to what is actually
perceptible at all in the environment (for example, if something is behind my office wall, I cannot see
it). The customisation at the agent overall architecture level should be used for simulating faulty
perception (i.e., even though something is perceptible for that agent in that environment, it may still
not include some of those properties in its belief revision process).



6 Installation

Jason is distributed Open Source1 under GNU LGPL, and is kindly hosted by SourceForge (http:
//sourceforge.net). To install Jason, first download the latest distribution from http://jason.
sourceforge.net, then uncompress the downloaded file (in Linux, tar xzf <filename> should do).
It is probably a good idea to include Jason’s bin directory in your $PATH environment variable as
well. Assuming you are already able to compile and run Java programs in your machine, that is all you
have to do to run your AgentSpeak multi-agent system with Jason.
It should be helpful having a look at the examples directory of Jason’s distribution. They have

the same examples (including the ones in Section 2.4) using the Centralised and Saci infrastructure,
respectively.
If you choose to change the jason Java package, you will have to install Apache Ant (http:

//ant.apache.org/), then run ant compile at the main directory of the distribution. Remember
that by GNU LGPL you are only allowed to change copies of the original files which are given
different names from the official distribution.

1Check the Open Source Initiative website at http://www.opensource.org/.
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7 Conclusion

Jason was implemented in Java by Rafael H. Bordini and Jomi F. Hübner, with contributions from
various colleagues. Research in the area of agent-oriented programming languages is still incipient, so
we expect much progress from research in the area. We hope to incorporate new techniques arising
from research in the area into future releases of Jason.
Note that Jason is distributed completely on an “as is” basis. Because it has been developed during

our spare time, we cannot guarantee much support. However, if you have questions or bug reports,
you are welcome to use the mailing lists at SourceForge:

• jason-announcement@lists.sourceforge.net (where we announce new releases and impor-
tant news about Jason)

• jason-users@lists.sourceforge.net (for questions about using Jason)

• jason-bugs@lists.sourceforge.net (to report bugs)

We particularly welcome comments and experiences on building (large) applications with Jason,
and issues with the language that users are face with during their experimentation with AgentSpeak.
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