
Modules and Namespaces in Jason1

Gustavo Ortiz-Hernández, Jomi F. Hübner, and Rafael H. Bordini

July 2016 (update 2024)

Introduction
Concepts
Implementation

Namespace Prefix
Loading
Environment interaction
Operations
Unification

Examples
Factorial
Contract Net Protocol

Properties
Features
Open Problems
Bibliography

Introduction
This document describes how modules are used in Jason. Modules in Jason allow the programmer to develop
agent programs into separate, independent, reusable and easier to maintain units of code. The introduction of the
notion of namespace to organize components such as beliefs and events has addressed the name-collision problem
providing interface and information hiding features for modules.

Below, we present the conceptual view of modules and namespaces that was implemented for Jason. Examples
are used to illustrate the use of these features. At the end of the document, we include some bibliographical
references for those interested in alternative ways of having modules in agent-oriented programming languages
(some of which have inspired the Jason implementation to some extent).

Concepts
A module is as a set of beliefs, goals, and plans, as a usual agent program, and every agent has one initial module
(its initial program) into which other modules can be loaded. We refer to the beliefs, plans, and goals within a
module as the module components (cf. Figure 1).

Modularity is supported through the simple concept of namespaces, defined as an abstract container created to
hold a logical grouping of components. All components can be prefixed with an explicit namespace reference.

1 Another view (more academic) of modules and namespaces for Jason was presented at EMAS@AAMAS 2016.

mailto:gusorh@gmail.com
http://www.das.ufsc.br/~jomi/
http://www.inf.pucrs.br/r.bordini/

We write ns1::color(box,blue) to indicate that the belief color(box,blue) is associated with the
namespace identified by ns1. Furthermore, note that the belief zoo::color(seal,blue) is not the
same belief as office::color(seal,blue), as they reside in different namespaces.

Figure 1. Proposed model for modularity.

Namespaces are either global or local. A global namespace can be used by any module; more precisely, the
components associated with a global namespace can be consulted and changed by any module program. A local
namespace can be used only by the module that has defined the namespace. Modules can share components by
means of a common global namespace.

We introduce the notion of abstract namespace of a module to denote a namespace whose name is undefined at
design-time, and will be defined at runtime when the module is loaded. To indicate that a component is in a
module's abstract namespace, the prefix is simply omitted, e.g., a belief written as taste(candy,good) is in
an abstract namespace and its actual namespace will be defined when the module is loaded.

The loader of a module interacts with it in two directions: the loader imports the components of the module that
are in global namespaces and the loader extends the modules by placing components in those namespaces.

Implementation
The basic syntactic construct of a Jason program is a literal, which as in logic programming has the form

, where p is the predicate (that can be strongly negated with the ~ operator), n≧ 0, and each𝑝(𝑡
1
, ... , 𝑡

𝑛
) 𝑡

𝑖

denotes a term that can be either a number, list, string, variable, or a structure that has the same format of a
positive literal. We say then that each predicate p and structure term in a Jason program is a Jason identifier. For
instance, in a plan such as:

+!go(home) : forecast(sunny) <- walk_to(0,0).

the Jason identifiers are: go, home, forecast, sunny, and walk_to.

Namespace Prefix

We have extended the syntax of the Jason identifiers to allow a namespace prefix:

<id> ::= [<nid> ::] <jid>

where nid is a namespace identifier (an atom) and jid is used to denote the usual Jason identifier. For example, a
belief formula like count(0) can be written ns2::count(0) to associate it with the namespace ns2.

Since Jason identifiers are used for beliefs and goals, by prefixing them with a namespace, these elements are
being scoped within a particular namespace. Therefore, a plan written as:2

+!ns1::go(home) : ns2::forecast(sunny) <- +b.

will consider only an achievement-goal addition event +!go(home) in the namespace ns1, and a belief
forecast(sunny) in namespace ns2; beliefs and goals in other namespaces are not relevant for this plan.

Jason reserved keywords (e.g. source, atomic, self, tell, achieve, …), strings and numbers are handled as constants
and are not associated with namespaces.

Loading

The module loading process involves associating every component in the abstract namespace of the module to a
concrete namespace, and then simply incorporating the module components into the agent that loaded the
module. Therefore, a namespace must be specified at loading time to replace the module’s abstract namespace.

When a module is loaded, its components, i.e., beliefs, plans and goals, are added into the belief base, plan library
and desires (i.e. added as goals) of the agent, respectively.

The agent initial module is loaded in what we call the default namespace. This is a predefined global namespace
whose identifier is default. The components in the initial module are used as the initial belief base, plan
library, and goals for the agent.

Restricting access to local namespaces is done at loading time, using a name-mangling technique. This consists in
replacing every reference to a local namespace by an internally created namespace identifier. This is generated in
such a way that it is not a valid identifier in the Jason syntax (i.e., programmers cannot access such namespaces).
For instance, if ns2 denotes a local namespace, the loading process will rename a belief
ns2::color(box,blue) to #ns2::color(box,blue) where #ns2 is not a valid Jason identifier,
thus no developer can write a program that accesses this belief.

Terms within a literal are not changed when a module is loaded. For instance, when loading the belief
color(box,blue) in the namespace ns2, the belief ns2::color(box,blue)is actually added (and
not ns2::color(ns2::box, ns2::blue)). Terms can however be used with the namespace prefix, as
in .findall(C, ns2::color(_,C), L)that will consider only color/2 beliefs in namespace ns2.
Briefly, while predicates within module components (goals, beliefs and plans) without a namespace prefix are in
the abstract namespace, terms given as arguments to predicates are in the default namespace. If we need to force
some term to be considered in the abstract namespace, we can prefix it with "::". For instance,
.findall(C, ::color(_,C), L) will consider only color/2 beliefs in the namespace informed
when its module was loaded.

2 Plans are also scoped within a namespace given that their triggering events are based on beliefs and goals.

Environment interaction

Beliefs related to perception are placed in the default namespace, and thus also the corresponding events
(external events generated from perception). This solution keeps backward compatibility with previous source
code, since the initial module is loaded in this default namespace (besides, it makes sense as all modules of an
agent may potentially need to have access to information about the state of the environment).

Operations

The following directives are available to support the use of modules and namespaces in Jason:

● { include(<module> [, <namespace>]) }: loads the module <module> (an .asl file)
and its abstract namespace is associated with <namespace>. If the second argument is omitted, the
abstract namespace for <module> is the namespace of the module performing the include (and both
modules will thus share the namespace). For example, {include("m.asl", ns2)} loads the
module "m.asl" using ns2 for its abstract namespace, while if the second argument had not been given,
the effect would be the same as the original Jason "include" directive whereby further AgentSpeak code
is simply included as if it was part of the file using the include directive.

● { namespace(<id> [, <type>]) }: this directive indicates the type of namespace
<id>; the values for <type> can be either local or global.

● { begin namespace(<id> [, <type>]) } … { end }: this directive extends the
previous directive providing syntactic ‘sugar’ to facilitate the namespace association of components, so
that identifiers in the … part are placed in namespace <id>.

And the following internal actions:

● .include(<module> [, <namespace>]): identical to its homonymous directive.
● .namespace(<atom>): succeeds if <atom> is a namespace identifier. It backtracks on all

global namespaces. For example, .findall(X, .namespace(NS) & NS::b(X,_::_),
L) put in the list L all first terms of beliefs b/2 from all global namespaces, regardless of the second
term in belief b.

Note that the include directive is executed at parsing time (i.e. static loading) while the include internal action is
executed (from an intention) at run time (i.e. dynamic loading).

The operator =.. now supports four items in the list to include the namespace:

bob(10,"ola")[k::annot] =.. [NS,Functor,Terms,Annots]
NS -> default
Functor -> bob
Terms -> [10,"ola"]
Annots -> [k::annot]

Unification

Namespaces are taken into consideration in the unification process, for instance

ns1::bel(10) = ns2::bel(10)

fails (i.e. it does not unify, as the namespace is treated as part of the predicate name) since we are trying to unify
literals in different namespaces. Although we used the unification operator = in this example (and below), it
could just as well be the case that the agent has ns1::bel(10) in its belief base and performed the query
?ns2::bel(10). Similarly, although the examples are based on literals, the same applies to events. The event
+!n::g will have relevant plans, for instance, plans with the triggering event +!n::g or +!X::g.

More examples:

bel(10) = bel(10) // unifies since both are in the same namespace
n::bel(10) = n::bel(10) // unifies since both are in the same namespace
bel(10) = n::bel(10) // does not unify

Since variables can also be in a namespace, they allow us to further "play" with unification:

ns::A = ns::bel(10) // unifies and A -> bel(10)
ns::A = de::bel(10) // does not unify
ns::A = bel(10) // does not unify (unless the abstract namespace is ns)
A = bel(10) // unifies and A -> bel(10)
ns::A = ns::B // unifies and A -> B

Variables can be used as the namespace prefix:

ns::A = B::bel(10) // unifies and A -> bel(10), B -> ns
ns::A = B::C // unifies and A -> C, B -> ns
A = B::C // unifies and A -> C, B -> the abstract namespace of A

Numbers and strings are in all namespaces by definition (we cannot define their namespaces):

A = 10 // unifies and A -> 10
ns::A = 10 // unifies and A -> 10
N::A = 10 // unifies and A -> 10, N -> default

It is important to notice that terms also have namespaces:

ns::b(k::a) = b(a) // fails
ns::b(k::a) = ns::b(a) // fails (the term a is not in the same namespace)
ns::b(k::a) = ns::b(k::a) // unifies
ns::b(k::a) = N::b(O::a) // unifies and N -> ns, O -> k
ns::b(k::a) = N::b(O::X) // unifies and N -> ns, O -> k, X -> a
ns::b(k::a) = N::b(X) // fails, k::a does not unify with X, different namespaces

Examples
In this section, we illustrate how to use the features mentioned above by means of two examples. The first
example simply shows how to load a module and execute a plan in it. The second example demonstrates how
multiple instances of the same module can be exploited and also how different modules interact.

Factorial

In the following code, the module initial.asl uses the internal action .include to load the module
factorial.asl in the namespace fac and then adds two subgoals in this namespace. Since these subgoals
are posted in the fac namespace, they are handled by the module factorial.

The module factorial.asl provides functionality to print the factorial of a given number. This module
defines the local namespace priv (line 2) to encapsulate the functionality for computing the factorial (lines 3-8),
so the beliefs it adds to memoize factorials and the plan to compute them are only accessible from within this
module (as illustrated in line 13) and will not interfere or clash with any other module's beliefs or plans. The
namespace of print_factorial (line 12) is abstract and a concrete namespace is given when the module is
loaded. Because the namespace of print_factorial is global (as defined by the loader), we say that this
module is exporting plan @p1.

1 !start.
2
3 +!start
4 <- .include("factorial.asl",fac);
5 !fac::print_factorial(7);
6 !fac::print_factorial(5).
7
8
9
10
11
12
13
14

1 // exports +!print_factorial/1
2 {begin namespace(priv,local)}
3 factorial(0 ,1).
4
5 +?factorial(N,F) : N > 0
6 <- ?factorial (N -1, F1);
7 F = F1 * N;
8 +factorial(N,F).
9 {end}
10
11 @p1
12 +!print_factorial(N)
13 <- ?priv::factorial(N,F);
14 .print("Factorial of ",N," is ",F).

initial.asl factorial.asl

Contract Net Protocol

This example shows how to implement the Contract Net Protocol (CNP) using modules. Agent Bob (see code
bob.asl) statically loads the module initiator.asl twice (lines 1-2), which endows it to start CNP
instances for tasks build(park) and build(bridge) (lines 4-5). In this implementation, each CNP
takes place in a different namespace to isolate the beliefs and events of each independent task allocation process.

1 {include("initiator.asl",hall)}
2 {include("initiator.asl",comm)}
3
4 !hall::startCNP(build(park)).
5 !comm::startCNP(build(bridge)).
6
7
8
9
10
11
12
13
14
15

1 !start([fix(tv),fix(computer),fix(fridge)]).
2
3 +!start([]).
4 +!start([fix(T)|R])
5 <- .include("initiator.asl",T);
6 .add_plan(
7 {+T::winner(W)<-
8 .print("Winner to fix ",T," is ", W)
9 });
10 !!T::startCNP(fix(T));
11 !start(R).
12
13
14
15

bob.asl alice.asl

Agent Alice starts multiple CNP’s. Therefore it dynamically loads one instance of module initiator.asl
for each CNP started (line 5). The functionality provided by the module initiator is extended by adding one plan to
the same namespace where the module is loaded (lines 6-9).

Company A participates in all CNPs by loading module participant in every namespace where it listens
that a CNP has started (note that the namespace in line 2 is a variable). Two beliefs are added into the namespace
where the module is loaded (lines 4-5), extending the module. The module uses these beliefs to decide what tasks
can be accepted and how much to bid (cf. lines 6-7 of participant.asl).

Company B plays the participant role only in CNPs started by agent Bob, and taking place in namespaces hall
or comm. When a CNP starts under these conditions, it loads the module participant.asl in the
corresponding namespace. The beliefs on lines 1-5 extend the functionality of the module by setting the strategy
for bidding and accepting tasks. Company B only accepts tasks for building and its bids depend on the
namespace in which the CNP is being carried on.

Further details are provided by comments in the sources below.

1
2 +N::cnpStarted[source(A)]
3 <- .include("participant.asl", N);
4 +N::price(_,(33*math.random)+100);
5 +N::acceptable(fix(_));
6 !N::joinCNP[source(A)].
7
8
9
10

1 hall::price(build(_),300).
2 hall::acceptable(build(_)).
3
4 comm::price(build(_),100).
5 comm::acceptable(build(_)).
6
7 +N::cnpStarted[source(bob)]
8 : .member(N,[hall,comm])
9 <- .include("participant.asl", N);
10 !N::joinCNP[source(bob)].

company_A.asl company_B.asl

Module initiator encapsulates the agent functionality to start a CNP. Since local namespaces have to be defined
before their use, a forward declaration of the local namespace priv takes place at line 1. The rule on lines 3-7 is
private because it is added into a local namespace.

1 {namespace(priv,local)} //Forward definition
2
3 priv::all_proposals_received
4 :- .count(::introduction(participant)[source(_)],NP) & // number of participants
5 .count(::propose(_)[source(_)], NO) & // number of proposals received
6 .count(::refuse[source(_)], NR) & // number of refusals received
7 NP = NO + NR.
8
9 //Starts a CNP
10 +!startCNP(Task)
11 <- .broadcast(tell, ::cnpStarted);
12 // 'this_ns' is a reference to the namespace where this module was loaded
13 // in this example it is the namespace where the CNP is being performed
14 .print(" Waiting participants for task ",Task," in ",this_ns,"...");
15 .wait(3000);
16 -+priv::state(propose);

17 .findall(A, ::introduction(participant)[source(A)],LP);
18 .print("Sending CFP for ",Task," to ",LP);
19 .send(LP,tell, ::cfp(Task));
20 // the deadline of the CNP is now +15 seconds, so
21 // the event +!contract(this_ns) is generated at that time
22 .at("now +25 seconds", { +!priv::contract(this_ns) }).
23
24 // if all proposals have been received, don't wait for the deadline
25 // receive proposals
26 +propose(_) : priv::state(propose) & priv::all_proposals_received
27 <- !priv::contract(this_ns).
28
29 // receive refusals
30 +refuse : priv::state(propose) & priv::all_proposals_received
31 <- !priv::contract(this_ns).
32
33 // to let the agent know the current state of the CNP
34 +?cnp_state(S) <- ?priv::state(S).
35 +?cnp_state(none).
36
37 {begin namespace(priv)}
38 +!contract(Ns) : state(propose) & not .intend(::contract(_))
39 <- -+state(contract);
40 .findall(offer(Price,A), Ns::propose(Price)[source(A)],L);
41 .print("Offers in CNP taking place in ",Ns," are ",L);
42 L \== [];
43 .min(L,offer(WOf,WAg));
44 +Ns::winner(WAg);
45 !announce_result(Ns,L);
46 -+state(finished).
48
49 // nothing to do, the current phase is not 'propose'
50 +!contract(_).
51
52 -!contract(Ns)
53 <- .print("CNP taking place in ",Ns," has failed! (no proposals)").
54
55 +!announce_result(_,[]).
56 // award contract to the winner
57 +!announce_result(Ns,[offer(_,Ag)|T]) : Ns::winner(Ag)
58 <- .send(Ag,tell, Ns::accept_proposal);
59 !announce_result(Ns,T).
60 // announce to others
62 +!announce_result(Ns,[offer(_,Ag)|T])
63 <- .send(Ag,tell, Ns::reject_proposal);
64 !announce_result(Ns,T).
65 {end}

initiator.asl

1 // Participating in CNP
2 +!joinCNP[source(A)]
3 <- .send(A,tell, ::introduction(participant)).
4
5 // Answer a Call For Proposal

6 +cfp(Task)[source(A)] : acceptable(Task)
7 <- ?price(Task,Price);
8 .send(A,tell, ::propose(Price));
9 +participating(Task).
10
11 +cfp(Task)[source(A)] : not acceptable(Task)
12 <- .send(A,tell, ::refuse);
13 .println("Refusing proposal for task ", Task, " from Agent ", A).
14
15 // Possibly results of my Proposal
16 +accept_proposal : participating(Task)
17 <- .print("My proposal in ",this_ns," for task ", Task," won!").
18 // do the task and report to initiator
19
20 +reject_proposal : participating(Task)
21 <- .print("I lost CNP in ",this_ns," for task ",Task,".").

participant.asl

Properties
After Jason 3.3 namespaces may have properties. For example:

.namespace_set_prop(family, uri, "http://xxx.com");

.namespace_set_prop(family, size, 4);

.namespace_set_prop(family, root, bob);

.namespace_get_prop(family, uri, URI);
// unifies and URI -> "http://xxx.com"

.namespace_get_prop(family, kk, KK, k1); // unifies and KK -> k1

// get all properties (LK=[uri,root,size])
.findall(K, .namespace_get_prop(family, K), LK);

// get all properties and values
.findall([K,V], .namespace_get_prop(family, K, V), LKV);

Features
Namespaces and modules in Jason have the following features:

● syntax-based solution (no changes in the semantics of Jason)
● flat scheme for namespaces (no hierarchy)
● the same module can be loaded several times in different namespaces
● naming clash solved by namespaces
● isolation solved by local namespaces
● information hiding solved by local namespaces
● modules can be dynamically loaded (by the .include internal action) or statically loaded (by the include

directive)
● the agent has a single "mind" (avoiding the schizophrenia of the sub-agent approach)

● composition: several modules can be loaded in the same namespace to compose a more complex
solution

● event consumption: external events should be consumed by plans in the default namespace and once
consumed by a plan cannot be used by others (but a default namespace plan can be used to captuer the
event and force copies of the event to be recreated for various other namespaces if needed); a side
effect: if two modules have plans for the same external event, one will get it and the other no, so the
order of loading is relevant in this case.

● the functionality of modules can be extended and customized by adding plans and beliefs to them.

Open Problems
What is the best implementation for .exclude/.unload?
options (not exclusive):

1. it removes all plans from a namespace (say n) -- no reference to the source code file
2. also the local namespaces created in the scope of n
3. also beliefs in n
4. also intentions from n
5. recursively remove also all namespaces used to load some module in the scope of n
6. modules have a predefined plan to clean it up (and by default does what options 1-4 suggest). This plan

can be called by the loader and can be overridden (as we do with KQML plans).

Bibliography
Paolo Busetta, Nicholas Howden, Ralph R�onnquist, and Andrew Hodgson. Structuring BDI agents in functional
clusters. In Nicholas R. Jennings and Yves Lesperance, editors, Intelligent Agents VI, Agent Theories,
Architectures, and Languages (ATAL), 6th International Workshop, ATAL 99, Orlando, Florida, USA, July
15-17, 1999, Proceedings, volume 1757 of Lecture Notes in Computer Science, pages 277-289. Springer, 1999.

Lars Braubach, Alexander Pokahr, and Winfried Lamersdorf. Extending the capability concept for exible BDI agent
modularization. In Proceedings of the Third international conference on Programming Multi-Agent Systems,
ProMAS'05, pages 139-155, Berlin, Heidelberg, 2006. Springer-Verlag.
Mehdi Dastani and Bas Steunebrink. Modularity in bdi-based multi-agent programming languages. In Proceedings of the
2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology -
Volume 02, WI-IAT '09, pages 581-584, Washington, DC, USA, 2009. IEEE Computer
Society.

Michal Cap, Mehdi Dastani, and Maaike Harbers. Belief/goal sharing BDI modules. In The 10th International
Conference on Autonomous Agents and Multiagent Systems - Volume 3, AAMAS '11, pages 1201-1202,
Richland, SC, 2011. International Foundation for Autonomous Agents and Multiagent Systems.

Neil Madden and Brian Logan. Modularity and compositionality in jason. In Lars Braubach, Jean-Pierre Briot, and
John Thangarajah, editors, Programming Multi-Agent Systems: 7th International Workshop, ProMAS 2009,
Budapest, Hungary, May 10-15, 2009. Revised Selected Papers, volume LNAI 5919, pages 237-253, Budapest,
Hungary, 2010. Springer, Springer.

Koen Hindriks. Modules as policy-based intentions: modular agent programming in goal. In Proceedings of the 5th
international conference on Programming multi-agent systems, ProMAS'07, pages 156-171, Berlin, Heidelberg,
2008. Springer-Verlag.

M. Birna van Riemsdijk, Mehdi Dastani, John-Jules Ch. Meyer, and Frank S. de Boer. Goal-oriented modularity in
agent programming. In Proceedings of the fifth international joint conference on Autonomous agents and
multiagent systems,AAMAS '06, pages 1271-1278, New York, NY, USA, 2006. ACM.

Daniel N. Kiss and Bryan Logan. Jason+: Extension of the Jason agent programming language. Dissertation submitted
6th May 2016. School of Computer Science and Information Technology, University of Nottingham, England.

